Anesthetic management of Diaphragmatic Hernia
Dianna Ovbey, DVM, MS, DACVAA
Southeast Veterinary Anesthesia Services

Summary
Describe the various types of diaphragmatic hernias
Identify our anesthetic concerns for the most common surgical patients using the
delivery of oxygen equation
Make an anesthetic plan based on our anesthetic concerns

Types of diaphragmatic hernias
Traumatic
 Acute
 Subacute
 Chronic
Congenital
 Pleuroperitoneal
 Peritoneopericardial (aka PPDH)

Our most common surgical patients are found within the traumatic variety of diaphragmatic
hernias. We must consider at least 3 different scenarios for the various anesthetic concerns we
can encounter. In each case, we should consider how the condition affects the delivery of
oxygen.

Consider the equation DO2 = CaO2 (content of arterial oxygen) x CO (cardiac output). Please
recall that CaO2 takes into consideration the amount of hemoglobin (Hb) present, the
percentage of hemoglobin oxygen saturation (SaO2), and the partial pressure of oxygen
dissolved in plasma (PaO2). CO include heart rate multiplied by stroke volume (preload,
afterload, and cardiac contractility).

Acute Diaphragmatic Hernia Anesthetic Concerns

Hypoventilation (PaO2 and SaO2)
 Pain from fractured ribs
 Pneumothorax
 Atelectasis
 Hemothorax
 Abdominal organs invading the chest
Anemia (Hb)
 Hemothorax
 Other internal bleeding (liver, spleen, kidney)
Shock (Preload, Afterload)
 Hemorrhage
 Autonomic disturbances
Arrhythmias (Heart rate)
Concussive cardiac damage
Aspiration of gastric contents (Pa O2)

Acute Diaphragmatic Hernia Anesthetic protocol

First stabilize prior to any anesthetic administration

If patient is experiencing tachycardia check for evidence of hemorrhage (CBC, PCV, ultrasound). Place IV catheter for fluid therapy. Provide a quarter to a third shock dose (80-90 mL/kg, dog) (50-60 mL/kg, cat) crystalloids while determining Hb concentration.

Provide flow-by oxygen support.

Flow-by oxygen is sufficient when the patient is breathing comfortably and the pulse oximeter is reporting 93-95% saturation of hemoglobin. This should be continued until the patient has been induced for surgical intervention.

If patient is experiencing paradoxical breathing pattern and/or pulse oximetry doesn’t improve to 93% or better with flow-by oxygen consider emergency induction and rapid intubation. In this case, a neuroleptic induction may be necessary, meaning a high dose opioid (15 mcg/kg Fentanyl) and high dose benzodiazepine (0.5 mg/kg Midazolam). This combination is mixed in the same syringe and given as a third of the milliliter dose every 30 seconds until the patient can be intubated.

Provide analgesia

Assuming the patient has no evidence of altered mentation secondary to traumatic brain injury a full mu agonist such as: hydromorphone, methadone, fentanyl (along with a continuous rate infusion), or morphine can be used to treat pain and can be used as a pre-emptive analgesic/premedication before anesthesia.

Be prepared to assist in patient ventilation after anesthetic induction

Reverse Trendelenburg position
Hand ventilate or mechanical ventilation

Try to improve atelectasis

Recruitment maneuvers
Positive-end expiratory pressure
Ventilate at the lowest effective peak inspiratory pressure
Be prepared to treat arrhythmias from traumatic injury

 Treat when arrhythmias causing deleterious effects on cardiac output
 Lidocaine bolus 2 mg/kg up to 8 mg/kg along with lidocaine cri 50 mcg/kg/min
 Avoid inducing with Ketamine if arrhythmias are present as you may increase the severity of the arrhythmia.

Be prepared to treat autonomic disturbances secondary to trauma and anesthesia

 Dobutamine 1-5 mcg/kg/min as a CRI
 Dopamine 5-20 mcg/kg/min as CRI
 Norepinephrine 0.05-2 mcg/kg/min as CRI

Consider pre-treating the patient for post anesthetic nausea

 Cerenia 1 mg/kg
 H2 blocker or proton pump inhibitor

Consider arterial catheter for direct blood pressure measurement and arterial blood gas sampling

Don’t forget post-operative considerations

 Analgesia
 Pure mu agonist such as fentanyl CRI
 Oxygen supplementation during recovery
 Post op atelectasis
 More intensive post op monitoring
 Heart rate
 Blood pressure
 Respiratory rate
 Pulse oximetry/blood gas monitoring
 Temperature
 Pain and anxiety checks

Subacute and chronic diaphragmatic hernia anesthetic concerns

 Hypoventilation (PaO2 and SaO2)
 Hydrothorax
 Atelectasis
 Abdominal organs invading the chest

 Aspiration of gastric contents
Bleeding
Adhesions

Re-expansion pulmonary edema
 Chronic atelectasis
 Shearing forces
 Lack of surfactant
 Inflammatory response

Provide flow-by oxygen support.
 Flow-by oxygen is sufficient when the patient is breathing comfortably and the pulse oximeter is reporting 93-95% saturation of hemoglobin. This should be continued until the patient has been induced for surgical intervention.

Provide analgesia
 A full mu agonist such as: hydromorphone, methadone, fentanyl (along with a continuous rate infusion), or morphine can be used to treat pain and can be used as a pre-emptive analgesic/premedication before anesthesia.

Be prepared to assist in patient ventilation after anesthetic induction
 Reverse Trendelenburg position
 Hand ventilate or mechanical ventilation

Try to improve atelectasis gradually as re-expansion pulmonary edema may result from over aggressive recruitment
 Recruitment maneuvers
 Positive-end expiratory pressure
 Ventilate at the lowest effective peak inspiratory pressure

Be prepared to treat autonomic disturbances anesthesia
 Dobutamine 1-5 mcg/kg/min as a CRI
 Dopamine 5-20 mcg/kg/min as CRI
 Norepinephrine 0.05-2 mcg/kg/min as CRI

Consider pre-treating the patient for post anesthetic nausea
 Cerenia 1 mg/kg
 H2 blocker or proton pump inhibitor
Consider arterial catheter for direct blood pressure measurement and arterial blood gas sampling

Don’t forget post-operative considerations

Analgesia
 - Pure mu agonist such as fentanyl CRI
Oxygen supplementation during recovery
 - Post op atelectasis
More intensive post op monitoring
 - Heart rate
 - Blood pressure
 - Respiratory rate
 - Pulse oximetry/blood gas monitoring
 - Temperature
 - Pain and anxiety checks